
Network ecology

Scientists studying diverse complex systems such
as social communities, protein interactions, and
economies use network models and network anal-
ysis to investigate the system’s structure, function,
and evolution. Network ecology is the investigation
of ecological systems using these tools. Mathemat-
ically, a network model is a graph comprised of a
set of nodes that represent the objects or actors in
the system and edges that represent some relation-
ship(s) that connects the nodes. For example, in a
food web, nodes may be species populations and
directed edges (i.e., having directional relationships)
show the relationship of who eats whom. Network
science in general has exploded in recent years [1],
but the approach has deep roots in several disciplines
including ecology [2]. Today, network models have
a wide use in ecology including metapopulation
analysis [3], landscape ecology [4], and mutualis-
tic interactions [5]. This article focuses on ecosys-
tem network ecology as an exemplar of the field as
a whole.

In ecosystem network ecology, ecologists con-
struct and analyze models to understand the intrica-
cies of material and energy flows. In these networks,
nodes are compartments that contain a designated
form of material or energy; the directed edges repre-
sent flows of energy–matter between these compart-
ments and with the external environment. The term
most often associated with this discipline is ecosys-
tem or ecological network analysis (ENA), though
network environ analysis is also commonly used.
The method is a collection of algorithms designed
to aid the understanding of the flow structure of
the network and, by inference, the corresponding
ecosystem. These algorithms are particularly valuable
to the ecologist in categorizing compartments and
groups of compartments, defining indirect relation-
ships between compartments, and indexing system-
level attributes.

This article introduces the reader to network
ecology and ENA in the following ways:

Based in part on the article “Network ecology” by
Robert R. Christian and Robert E. Ulanowicz, which
appeared in the Encyclopedia of Environmetrics.

1. It familiarizes the reader with the origins of
network ecology and ENA and explains the
construction of ecological energy–matter flow
networks.

2. It provides an overview of the ENA algorithms
and identifies software to implement them.

3. It describes a selected group of algorithms in
more detail with special attention to system-level
attributes.

4. It also highlights some of the applications of
ENA and the new ecology it is generating.

Origins

Although the use of networks to describe the flow
structure of ecosystems dates to the first half of
the twentieth century [6], the use of formal algo-
rithms in what is now called ENA did not begin to
develop until the 1970s [7]. At that time it became
obvious that mechanical simulation modeling was
limited in its capacities to represent actual ecosys-
tem dynamics [8]. Thus, ecologists began developing
alternative tools like network analysis [9]. Respond-
ing to these developments, the Scientific Committee
on Ocean Research (SCOR) of the United Nations
formed Working Groups 59 (Mathematical Models
in Biological Oceanography) and 73 (Ecosystem The-
ory in Relation to Biological Oceanography). These
groups urged ecologists to shift attention from stocks
and biomasses toward a greater emphasis upon the
measurement and analysis of ecological processes in
general and upon trophic transfers in particular [10].
Out of this movement arose the systematic analysis
of ecological flow networks [11] and the protocols
for network ecology.

Flow Networks

Ecosystem flow networks trace thermodynamically
conserved currencies through the system, captur-
ing the ecosystem architecture and illuminating the
hidden connections between ecosystem members.
Frequently used currencies include energy, carbon,
nitrogen, and water. These models are like road maps
for resource distribution in ecosystems. While the
models can take several forms, two common types
are trophic and biogeochemical models.

Trophic flow networks have a food web at their
core and are most common. Trophic processes are
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Figure 1 Schematic representation of the annual carbons flows among the 36 principal components of the Chesapeake
Bay mesohaline ecosystem [12]. Carbon standing crops are indicated within the compartments in mg m−2 and the indicated
carbon flows are in mg C m−2 y−1. Source: Reproduced by permission of Ecological Society of America [12].

often the focus because consumption is an important
way of transferring energy–matter from one com-
partment to another. Trophic flow networks focus
on two questions: “Who eats whom?” and “At what
rates?”. An important difference between trophic
networks and classic food webs, however, is that
food webs restrict their relationship to who eats
whom. Trophic ecosystem network models include
all physical, chemical, and biological processes
for energy–matter movement including respiration,
excretion, and death. Typically these models explic-
itly map energy–matter movement to and from living
compartments to nonliving pools of dead organic
matter (detritus). Also depicted in these models are
transfers of the energy–matter to or from the external
world, for example, primary productions, respira-
tions, and other exports and losses. Figure 1 is a
diagram of the Chesapeake Bay trophic ecosystem
network [12] that shows these flows.

Biogeochemical ecosystem network models usu-
ally trace a nutrient currency such as nitrogen or
phosphorus. These models may have trophic com-
ponents, but they also tend to have more nonliv-
ing compartments representing different states of the
nutrient (e.g., nitrate and ammonia) and have more
nontrophic biogeochemical transactions like nitrifi-
cation [13]. When compared to trophic networks,
the models tend to have more aggregated biologi-
cal nodes, higher connectance, and to be functionally
less dissipative, and to have more recycling [14].

Regardless of the model type, constructing these
networks synthesizes existing data and knowledge
and often identifies missing information. While the
magnitudes of some fluxes are available for most
ecosystems, direct measurements of all transfers are
rare. For trophic process, one may combine the
biomass densities (e.g., g C m−2) of the various
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components with tabulated data or allometric equa-
tions for physiological ratios, such as consumption:
biomass, respiration: biomass, and assimilation effi-
ciency. Then with knowledge of the diet composition,
one may estimate the trophic flows. Several software
packages can assist with model construction and bal-
ancing including MATLOD (cf. NETWRK below),
WAND, WAND Balance, and Ecopath (see URLs in
the next section).

Ecological Network Analysis

Given an ecosystem network model, ecologists apply
ENA to investigate the organization and function
of these complex systems. Algorithms for many
analyses have been developed, including analyses of
network structure, flow, storage, utility, environ, and
information characteristics. For example, structural
analysis focuses on the topology of the network.
It can enumerate pathways between nodes and can
identify the characteristic cycles within the system.
Flow analysis provides matrices and vectors designed
to quantify both direct and indirect relationships of
nodes and the origin and fates of material flowing
through the system. Selected analyses are described
in more detail in the next section.

Software to perform ENA calculations is available.
Ulanowicz developed one of the first packages called
NETWRK (http://www.cbl.cees.edu/∼ulan/
ntwk/network.html). WAND (http://www.
dsa.unipr.it/netanalysis/?Software) is a
Microsoft Windows implementation of many but
not all of the algorithms in NETWRK. Ecopath,
developed by Christensen and Pauly (http://www.
ecopath.org/), focuses on model construction,
but implements some of the network analyses. It
was intended for application to fisheries, which is
reflected by some of its terminology. Fath and Bor-
rett introduced NEA.m, a Matlab function to perform
a broad spectrum of ENA from the environ per-
spective (http://people.uncw.edu/borretts/
research.html). EcoNet (http://eco.engr.
uga.edu/) is a newer online software for ENA that
adds new capabilities. Each package contains some-
what different algorithms, assumptions, benefits, and
limitations. To date there exists no comprehensive
software that offers a unified framework.

Selected ENA Algorithms

ENA is based on the premise that analysis of network
representations may aid understanding of complex,
natural systems. With mathematical tools, one can
glean useful insights at several levels of resolution
into the functioning of the ecosystem. Some of the
analyses provide insight into how components inter-
relate and some refer to system-level attributes. Here,
we describe selected ENA algorithms to highlight a
range of analyses and insight available. These are by
no means the only analyses that can be employed,
nor the only ways they can be used.

Structural Analysis

Structural network analysis concentrates on the
unweighted topological arrangements of the network.
It begins with counts of the number of network nodes
and edges as a way of characterizing the size of
the network and its internal connectivity. As indi-
rect influences can be important in systems, network
scientists use network analysis to count and occa-
sionally to identify pathways between nodes that may
cross several edges. For example, in the Chesapeake
Bay network (Figure 1) the pathway from free bac-
teria (#5) → heteromicroflagellates (#6) → micro-
zooplankton (#7) → oysters (#13) has a length of
3. Because of cycling, the number of pathways in
ecosystems tends to increase geometrically as path
length increases (Figure 2(a)). The rate at which path-
ways proliferate is a whole-system indicator of the
system connectivity.

Flow Analysis

Flow analysis focuses on the weighted flows in the
system and is the core of many ENA algorithms. The
first step in flow analysis is to determine the total
amount of energy–matter flowing into or out of each
node, which is called node throughflow . In the Chesa-
peake Bay model, the croaker compartment (#25) has
0.3 + 2.1 + 7.2 = 9.6 mg C m−2 y−1 flowing into the
node and 1.6 + 4.9 + 3.1 = 9.6 mg C m−2 y−1 flow-
ing out of the node. In this case the total input and
output throughflow is equal because the model is at
steady state. The sum of the node throughflows is
termed total system throughflow , which is a measure
of the total system activity. If we sum all of the
model inputs, internal flows, and outputs we obtain a
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Figure 2 The (a) total number of pathways and (b) total
and cumulative flow as path length increases in the Chesa-
peake Bay ecosystem model.

related whole-system indicator called the total sys-
tem throughput , which is larger than total system
throughflow. Another useful whole-system indicator
of the system function is the total system throughflow
divided by the total system inputs. This indicates the
average amount of activity that a unit input gener-
ates and is called the average path length or network
aggradation .

Another ENA flow algorithm determines the total
contribution matrix. It is used to evaluate the frac-
tion that any compartment’s throughflow contributes
to any other compartment’s activity. This contribution
is derived from the matrix of exchanges among the
compartments. The matrix coefficients represent con-
nections between compartments that may be either
direct (path length of one) or indirect (path length
greater than one). Thus, no direct connection is nec-
essary for a contribution to occur. For example,
zooplankton directly eats phytoplankton in Figure 1.

However, the relationship between fish larvae and
phytoplankton is indirect as it transfers through zoo-
plankton. The total contribution matrix includes the
relative contributions of both the direct connections
(e.g., the fraction of production from phytoplankton
to zooplankton), as well as the indirect connections
(e.g., the fraction of production from phytoplankton
to fish larvae). Indirect effects tend to be relatively
large and develop rapidly in ecosystems, even though
the total amount of flow falls off significantly as path-
way length increases [14] (Figure 2(b)).

The total dependency matrix evaluates the fraction
of a compartment’s throughflow that resided at some
point in another compartment. As such, this analysis
is the obverse of total contribution and can be used
to assess the extended diet of consumers.

Biogeochemical cycle analysis evaluates the nature
of flows associated with cycles within the net-
work [15]. A cycle is a series of transfers that,
in combination, pass material from a compartment,
through one or more other compartments, and returns
material to the original one. This creates a positive
feedback or autocatalytic loop. The transfer within
a cycle that has the smallest flux is called the weak
arc, and a group of cycles sharing the same weak
arc is called a nexus . The weak arc is potentially the
controlling flow within a cycle, and as such, all cycles
in a nexus share a common control. In the example
as shown in Figure 1, a cycle exists as the follow-
ing: carbon is passed from particulate organic carbon
(POC) (#35) to attached bacteria (#2) to zooplankton
(#8) and back to POC. The smallest flux (weak arc)
is the consumption of bacteria by zooplankton. There
is also a cycle from 35 to 2 to 8 to ctenophores (#9)
and back again to 35, and its smallest flow is from 2
to 8. The two cycles form a nexus controlled by their
common weak arc. If all flows within the cycles were
to be reduced by the amount of flow from bacteria
to zooplankton, then both cycles would be broken. If
zooplankton feeding were to increase, then one might
also infer that both cycles would have greater flow.

The total flow associated with these cycles is
termed recycled flow . The Finn Cycling Index is
the fraction of total system throughflow that
is recycled [16]. This is a whole-system indicator of
the functional connectivity of the system components.

Environ Analysis

Environ analysis builds on the core flow analy-
sis, but it further evaluates the origin and fate of
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energy–matter exiting or entering the system [17].
It generates a partition set of node-specific subnet-
works. Input environs reveal the origins of material
exiting one of the compartments, while the output
analysis shows the fate of input to a node. This anal-
ysis can be used, for example, to determine the fate
of primary production from either benthic diatoms
or phytoplankton as it passes through and out of the
ecosystem.

Information Analysis

Information analysis consists of a set of whole-
system indicators that describe the organization and
development of ecological systems [18]. These indi-
cators are based on information theory and reflect
the agencies potentially responsible for changes in
network structures [19]. They stem from the role
of chance and historical contingency in effect-
ing change. Ulanowicz [19] argues that autocat-
alytic configurations (i.e., positive feedback loops or
cycles) affected by chance disturbances can gener-
ate a nonmechanical system response. This response
is reflected in whole-system attributes including
selection, growth enhancement, symmetry break-
ing, centripetality of resources, inducement of com-
petition between autocatalytic clusters, and partial
autonomy.

Three indicators are central to this analysis: capac-
ity, ascendency, and overhead. Each is a combina-
tion of an extensive (size dependent) and intensive
(size independent) element. Total system throughput
(TSTp) is the extensive scalar in all three indica-
tors. The capacity of the system is a measure of
the diversity of energy–matter movement through
the system, which is indicated by the familiar Shan-
non–Wiener index [20], H , applied to the flows in
the network. Capacity (C) is then H× TSTp. In eco-
logical systems, only a fraction of this capacity is
achieved because ecological processes are not ran-
domly construed; the flow structure is more ordered.
Average mutual information (AMI) is the amount
by which the constraints encumber the potential
complexity, H , and Ascendency (A) is then AMI
scaled by TSTp, such that C ≥ A ≥ 0. The remaining
potential complexity, C − A (>0), is called system
overhead , φ. In contrast to the ascendency, which
measures the amount of complexity that is expressed
as constrained flow structure, the overhead assigns

a number to the residual flexibility that the system
retains.

Ecologists have used these information analyses
in several ways. Their origination was to character-
ize the maturity of ecosystems in terms of develop-
ment [18]. They have also been used to try to quantify
the concepts of ecosystem health and integrity [19].
These measures are built into Ecopath and are fre-
quently used to characterize the organization of
ecosystems associated with fisheries.

Limitations

While ENA is a powerful approach for studying com-
plex ecosystems, it has limitations. An important con-
straint is that network models are data intensive. Each
compartment requires an estimate of standing stock,
and estimates of the magnitude of energy–matter flux
between the compartments and between the compart-
ments and the system environment. There is both
a qualitative concern that each connection be ade-
quately identified and a quantitative concern that
the values for standing stocks and flows are appro-
priate. Direct measurement of each stock, flow or
parameter is rare, and the consequences of using
information from such sources are rarely evaluated.
Furthermore, little evaluation is usually made of the
ramifications of stochasticity or uncertainty upon
the network analysis. A second limitation is that
many analyses assume the model is at steady-state
and thus do not capture the effects of system dynam-
ics. Further, most of the analyses are based on linear
algebra and, therefore, are not prone to the com-
plexities associated with nonlinearities. Third, the
analyses typically only trace a single conserved cur-
rency at a time, which may not reflect all aspects
of energy–matter transactions and derived relation-
ships. Multiple models might be needed to build a
more comprehensive understanding. Finally, the anal-
ysis only captures the relationships mediated by or
captured in energy–matter fluxes. Many important
indirect, behavioral, and semiotic effects will not be
captured in this analysis.

Significance

Applications of network ecology are revealing the
hidden relationships among components of many
types of ecological systems. For example, Bondavalli
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and Ulanowicz [21] showed that although American
alligators are direct predators of frogs in the Ever-
glades swamp, their net relationship is mutualistic
because the alligators provide a net benefit by eat-
ing snakes, which are major predators on the frogs.
Baird and Ulanowicz [12] found that the Chesapeake
Bay ecosystem was divided into two separate sub-
systems – the pelagic and the detrital. The inclusion
of ENA methods in Ecopath has insured their contin-
ued contribution to fisheries ecology. Interestingly,
new applications of ENA are being used to evalu-
ate the sustainability of water use in such places
as Sarmato, Italy [22] and the energy metabolism of
cities in China [23]. ENA is helping scientists per-
ceive and manage specific systems, and it is building
a new theoretical understanding of ecological systems
in general [18, 24].

Possibly ENA’s most important contribution to
science has been the required change in philosoph-
ical perspective. In this age of complexity, there is
no more salient metaphor than the network, which
captures the entanglement of chance and necessity
essential for the growth, development, and persis-
tence of ecological systems. In short, ENA is in the
process of catapulting ecology from deep among the
pack of sciences to the very forefront of our under-
standing of the natural world.
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